When Multiple Exponence is Blocked

Lucien Carroll <lscarroll@ucsd.edu> UCSD Field Research Lab

1. Restricting redundancy

Morphological blocking effects can be understood to include avoidance of redundancy (Aronoff 1976; Anderson 1986; Aronoff & Anshen 1998; inter alia) women > *womans, *womens

went > *goed, *wented

In contrast, multiple exponence (ME) can be defined as the requirement of redundancy (Caballero & Harris 2012; Caballero & Inkelas to appear): d-ex-d-o-d-ano

5-destroy-5-PRES-5-EVID

'They (5) are evidently destroying it' (Batsbi: Harris 2009)

Many approaches that formalize a restriction on redundancy (e.g. Nover 1997, Stump 2001) then must provide a separate mechanism for ME.

2. Blocked ME in Gourmanchema

In Gourmanchema (Gur; Burkina Faso), the class of indefinite nouns is marked narked with a prefix (often identical). h

'a child'

'the child' 'the person'

'the people'

y a sumx, v	vinne definite nouns a	re also ma
ŋūmb-î	'donkeys'	bí-gā
î-ŋūmb-î	'the donkeys'	gī-bí-gā
gī-yié-gā	'the small calabash'	ó-nīl-ō
ó-yié-gū	'the big calabash'	bí-nī-bā

So: {DEF}:{CM-}, {CM}:/*/ > NoFS

However, regardless of definiteness, the heads of relative clauses are marked with a different prefix /ya-/, with tone changes.

'the person who' yā-bí-gá 'the child who' yā-níl-ó

yā-yiế-gấ 'the small calabash which'

Possessive prefixes also block class prefixes, despite possessed noun definiteness.

lí-ti-lī 'the book' ō-bád-ō 'the chief'				
n-tí-lí 'my book' n-bấd-ố 'my chief'	Root	Definite	3SG POSS	Relative
ō-ti-li 'his book' ŏ-bād-ö 'his chief' So: {POSS.DEF}:/*/. NoFS > {DEF}:{CM-}	chief	ō-bád-ō	ó-bấd-ố	yā-bád-ő
No reason to think prefixes are	child	gī-bí-gā	ō-bĩ-gà	yā-bĩ-gấ
prosodically restricted, cf	food	mī-jiē-mā	ó-jié-mà	yā-jié-má
(Data from Beckett 1974: 53-86)	people	bí-nī-bā	ó-ní-bā	yà-nì-bà

4. Quantitative typology

NoFeatureSplit tries to formalize an intuition: blocking is 'more common' than ME (though see Caballero & Harris 2012).

- In simple two-exponent factorial typology, ME is in only 1/3 of ranking space However, induced constraints are highly arbitrary - can't limit to just two morphs

- In a typology with more morphs (e.g. N=9), ME more common (N-1)/(N+1)NoFS > Morph1, Morph2, ... Morph9 Blocking Morph1 > NoFS > Morph2, ... Morph9 Blocking Morph1, Morph2 > NoFS > Morph3, ...
 - Multiple Exponence (2)

Morph1,... Morph9 > NoFS

Multiple Exponence (9) Also, quantitative typological prediction depends on assumed probability distribution of constraint ranks

Xu & Aronoff's interpretation of ranking space is the same as Riggle (2010): All constraints drawn from same distribution, uniform over ranks

- But prior probability in learning models (Hayes and Wilson 2008; Boersma and Pater 2008) implies normal/log-normal distribution of weights Functional constraints (e.g. NoFS) limited by more than just learning biases
- References

Amaral (2007) Diccionário de Português-Gitonga Gitonga-Português e compêndio gramatical. Câmara municipal de Oeiras.

- Anderson (1986) Disjunctive ordering in inflectional morphology, NLLT 4: 1-31. Aronoff (1976) Word-formation in generative grammar. MIT Press.
- Aronoff and Anshen (1998) Morphology and the lexicon: lexicalization and productivity. The Handbook of Morphology. Blackwell.
- Caballero and Harris (2012) A working typology of multiple exponence. Current issues in morphological theory: (Ir)regularity, analogy, and frequency.
- Caballero and Inkelas (to appear) Word construction: tracing an optimal path through the lexicon. To appear in a special issue of Morphology.

Xu and Aronoff (2011) propose treating redundancy restriction as a violable constraint NoFeatureSplit, so ME is only permitted when other constraints force it. In Realization OT framework, morphological correspondences are induced language-particular realization constraints; NoFeatureSplit is universal. Factorial typology makes ME look rare:

NoFeatureSplit > Morph1 > Morph2: only Morph1 realized Morph1 > NoFeatureSplit > Morph2: only Morph1 realized Morph1, Morph2 > NoFeatureSplit: both realized (ME)

- Makes parodox of blocking and ME explicit, but:
- Predicts that exponents which display ME cannot be blocked by other exponents of those features; this paper presents possible counterexamples
- Typological claim makes implicit assumptions about possible induced constraints

3. Blocked ME in Gitonga

In Gitonga (Bantu; Mozambique), demonstratives agree with the noun.						
mi-simbo ji-re 'those trees' m	ni-simb	o j-eji	ʻtl	hese trees'		
4-tree 4-DIST 4-	-tree	4-4.pr	ox			
yi-wonga yi-re 'that cat' yi	-wonga yj-eyi'this cat					
7-cat 7-DIST 7-	-cat 7-7.PROX					
The numerals 'one' to 'four' also agree, with 'one' marked twice.						
mi-simbo mi-v'iți 'two trees' yi-woŋga yi-mw-eyj-o 'one cat'						
4-tree 4-two 7-	4-tree 4-two 7-cat 7-one-7.PROX-o					
So: $\{CM\}$:/*/ > NoFS						
However, class 1 DIST uses class 3 /wu-/	Class	PROX	DIST	'one'		
and class 3 'one' uses class 1 /-ojo/.			2101			
Participate in ME in PROX, but blocked here.	1	j-oju	wu-te	m-ojo		
So: NoFS > $\{CM,1\}:/ju/, \{CM,3\}:/wu\}$		w-owu	wu-re	m-ojo		
Classes 1 and 3 have distinct adjectival CM,		r-eri	ri-re	ri-mw-edo		
but same nominal class prefix:						
out sume nominal class prenx.	7	yj-eji	yi-re	γi-mw-eγjo		
/mu-/ with monosyll roots, /0-/ with longer	7 9	γj-eji j-eji	yi-re ji-re	γi-mw-eγjo mw-ejo		
/mu-/ with monosyll roots, /0-/ with longer [-vc, + cont]-initial roots, /N-/ otherwise	7 9 14	γj-eji j-eji w-owu	yi-re ji-re wu-re	γi-mw-eγjo mw-ejo wu-m-owo		

5. Conclusions

- Feature-based blocking by NoFeatureSplit is insufficient to account for the blocked ME in Gourmanchema and Gitonga.
- The contrast between ME and blocking is not a single dimension: - Functionally, there are featural/cue-based reasons for both ME and blocking Violable NoFeatureSplit conceptualizes feature-based blocking;
 - Cue-based ME for 'weak' exponence (Caballero and Inkelas to appear) - Formally, morphotactics/templates needed for both ME and blocking
 - The data here (both ME and blocking) can be modeled with more detailed realization constraints (cf rule blocks), with or without NoFeatureSplit
- Typological models (especially quantitative ones) must distinguish cross-linguistic constraints from language-particular instantiation. If both are constraints, either: - separately, in distinct typological
 - and language-specific systems - use weighted constraints to factor out typological trends

from language variety

I owe thanks to:

- Gabriela Caballero
- Gitonga consultant John Januario
- other students of Gitonga at UCSD

Beckett (1974) A linguistic analysis of Gurma. MA thesis, Univ. of British Columbia. Boersma and Pater (2008) Convergence properties of a gradual learning algorithm for Harmonic Grammar, ROA-970.

Harris (2009) Exuberant exponence in Batsbi. NLLT 27: 267-303.

Hayes and Wilson (2008) A maximum entropy model of phonotactics and learning. Linguistic Inquiry 39: 379-440.

Noyer (1997) Features, positions, and affixes in autonomous morphological structure. Garland. Riggle (2010) Sampling rankings. ROA-1075.

Stump (2001) Inflectional morphology: A theory of paradigm structure, Cambridge Univ Press. Xu and Aronoff (2011) A realization optimality-theoretic approach to blocking and extended morphological exponence. Journal of Linguistics 47(3): 673-707.